1 a We have

$$egin{array}{ll} x = r\cos heta & y = r\sin heta \ = 1\cos\pi/2 & = 1\sin\pi/2 \ = 0 & = 1 \end{array}$$

so that the cartesian coordinates are (0,1).

b We have

$$egin{array}{ll} x = r\cos heta & y = r\sin heta \ & = 2\cos3\pi/4 & = 2\sin3\pi/4 \ & = -\sqrt{2} & = \sqrt{2} \end{array}$$

so that the cartesian coordinates are $(-\sqrt{2}, \sqrt{2})$.

c We have

$$egin{array}{ll} x = r\cos heta & y = r\sin heta \ &= 3\cos\left(-\pi/2
ight) &= 3\sin\left(-\pi/2
ight) \ &= 0 &= -3 \end{array}$$

so that the cartesian coordinates are (0, -3).

d We have

$$egin{array}{ll} x = r\cos heta & y = r\sin heta \ = -2\cos\pi/4 & = -2\sin\pi/4 \ = -\sqrt{2} & = -\sqrt{2} \end{array}$$

so that the cartesian coordinates are $(-\sqrt{2},-\sqrt{2})$.

e We have

$$egin{array}{ll} x = r\cos\theta & y = r\sin\theta \ & = -1\cos\pi & = -1\sin\pi \ & = 0 \end{array}$$

so that the cartesian coordinates are (1,0).

f We have

$$egin{array}{ll} x = r\cos heta & y = r\sin heta \ &= 0\cos\pi/4 & = 0\sin\pi/4 \ &= 0 & = 0 \end{array}$$

so that the cartesian coordinates are (0,0).

g We have

$$\begin{array}{ll} x = r\cos\theta & y = r\sin\theta \\ = 4\cos-5\pi/6 & = 4\sin-5\pi/6 \\ = -2\sqrt{3} & = -2 \end{array}$$

so that the cartesian coordinates are $(-2\sqrt{3}, -2)$.

h We have

$$x = r \cos \theta$$
 $y = r \sin \theta$
 $= -2 \cos 2\pi/3$ $= -2 \sin 2\pi/3$
 $= 1$ $= -\sqrt{3}$

so that the cartesian coordinates are $(1, -\sqrt{3})$.

i We have

$$x = r \cos \theta$$
 $y = r \sin \theta$
 $= -2 \cos (-\pi/4)$ $= -2 \sin (-\pi/4)$
 $= -\sqrt{2}$ $= \sqrt{2}$

so that the cartesian coordinates are $(-\sqrt{2}, \sqrt{2})$.

2 a
$$r = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$
 $\theta = an^{-1} - 1 = -rac{\pi}{4}$

The point has polar coordinates
$$(\sqrt{2}, -\pi/4)$$
. We could also let $r=-\sqrt{2}$ and add π to the found angle, giving coordinate $\left(-\sqrt{2}, \frac{3\pi}{4}\right)$.

$$egin{aligned} \mathbf{b} & r = \sqrt{1^2 + \left(\sqrt{3}
ight)^2} = 2 \ & heta = an^{-1}\sqrt{3} = rac{\pi}{3} \end{aligned}$$

The point has polar coordinates $\left(2,\frac{\pi}{3}\right)$. We could also let r=-2 and add π to the found angle, giving coordinate $\left(-2,\frac{4\pi}{3}\right)$.

$$egin{aligned} \mathbf{c} & r = \sqrt{(-2)^2 + 2^2} = 2\sqrt{2} \ & heta = an^{-1} - 1 = -rac{\pi}{4} \end{aligned}$$

The point has polar coordinates $\left(2\sqrt{2},-\frac{\pi}{4}\right)$. We could also let $r=-2\sqrt{2}$ and add π to the found angle, giving $\left(-2\sqrt{2},\frac{3\pi}{4}\right)$.

$$egin{aligned} \mathbf{d} & r = \sqrt{(-\sqrt{2})^2 + (-\sqrt{2})^2} = 2 \ & heta = -rac{3\pi}{4} \end{aligned}$$

The point has polar coordinates $\left(2,-\frac{3\pi}{4}\right)$. We could also let r=-2 and add π to the found angle, giving coordinate $\left(-2,\frac{\pi}{4}\right)$.

- e Clearly, r=3 and $\theta=0$ so that the point has polar coordinates (3,0). We could also let r=-3 and add π to the found angle, giving coordinate $(-3,\pi)$.
- f Clearly, r=2 and $\theta=-\frac{\pi}{2}$ so that the point has polar coordinates $\left(2,-\frac{\pi}{2}\right)$. We could also let r=-2 and add π to the found angle, giving coordinate $\left(-2,\frac{\pi}{2}\right)$.

3 Points P and Q are shown on the diagram below.

Since $\angle POQ = \frac{\pi}{3}$, we can use the cosine rule to find that

$$PQ^2 = OP^2 + OQ^2 - 2 \cdot OP \cdot OQ \cos(\pi/3)$$

= $2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \frac{1}{2}$
= $4 + 9 - 6$
= 7.

Therefore, $PQ = \sqrt{7}$.

4 Points P and Q are shown on the diagram below.

Since $\angle POQ = heta_2 - heta_1$, we can use the cosine rule to find that

$$PQ^2 = {r_1}^2 + {r_2}^2 - 2r_1r_2\cos(\theta_2 - \theta_1).$$

Therefore,

$$PQ = \sqrt{{r_1}^2 + {r_2}^2 - 2{r_1}{r_2}\cos(heta_2 - heta_1)}.$$